In vitro characterization of axitinib interactions with human efflux and hepatic uptake transporters: implications for disposition and drug interactions.

نویسندگان

  • Eric L Reyner
  • Samantha Sevidal
  • Mark A West
  • Andrea Clouser-Roche
  • Sascha Freiwald
  • Katherine Fenner
  • Mohammed Ullah
  • Caroline A Lee
  • Bill J Smith
چکیده

Axitinib is an inhibitor of tyrosine kinase vascular endothelin growth factor receptors 1, 2, and 3. The ATP-binding cassette (ABC) and solute carrier (SLC) transport properties of axitinib were determined in selected cellular systems. Axitinib exhibited high passive permeability in all cell lines evaluated (Papp ≥ 6 × 10(-6) cm/s). Active efflux was observed in Caco-2 cells, and further evaluation in multidrug resistance gene 1 (MDR1) or breast cancer resistance protein (BCRP) transfected Madin-Darby canine kidney cells type 2 (MDCK) cells indicated that axitinib is at most only a weak substrate for P-glycoprotein (P-gp) but not BCRP. Axitinib showed incomplete inhibition of P-gp-mediated transport of digoxin in Caco-2 cells and BCRP transport of topotecan in BCRP-transfected MDCK cells with IC50 values of 3 μM and 4.4 μM, respectively. Axitinib (10 mg) did not pose a risk for systemic drug interactions with P-gp or BCRP per regulatory guidance. A potential risk for drug interactions through inhibition of P-gp and BCRP in the gastrointestinal tract was identified because an axitinib dose of 10 mg divided by 250 mL was greater than 10-fold the IC50 for each transporter. However, a GastroPlus simulation that considered the low solubility of axitinib resulted in lower intestinal concentrations and suggested a low potential for gastrointestinal interactions with P-gp and BCRP substrates. Organic anion transporting polypeptide 1B1 (OATP1B1) and OATP1B3 transfected human embryonic kidney 293 (HEK293) cells transported axitinib to a minor extent but uptake into suspended hepatocytes was not inhibited by rifamycin SV suggesting that high passive permeability predominates. Mouse whole-body autoradiography revealed that [(14)C]axitinib-equivalents showed rapid absorption and distribution to all tissues except the brain. This suggests that efflux transport of axitinib may occur at the mouse blood-brain barrier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DMD #51193 1 In Vitro Characterization of Axitinib Interactions with Human Efflux and Hepatic Uptake Transporters: Implications for Disposition and Drug Interactions

Axitinib is an inhibitor of tyrosine kinase vascular endothelin growth factor receptors 1-3. ABC and SLC transport properties of axitinib were determined in selected cellular systems. Axitinib exhibited high passive permeability in all cell lines evaluated (Papp ≥ 6 x 10-6 cm/sec). Active efflux was observed in Caco-2 cells and further evaluation in MDR1-or BCRP-transfected MDCK cells indicated...

متن کامل

In Vitro Interactions of Epacadostat and its Major Metabolites with Human Efflux and Uptake Transporters: Implications for Pharmacokinetics and Drug Interactions.

Epacadostat (EPAC) is a first-in-class, orally active inhibitor of the enzyme indoleamine 2,3-dioxygenase 1 and has demonstrated promising clinical activity. In humans, three major plasma metabolites have been identified: M9 (a glucuronide-conjugate), M11 (a gut microbiota metabolite), and M12 (a secondary metabolite formed from M11). It is proposed, based on the human pharmacokinetics of EPAC,...

متن کامل

The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions.

Lapatinib [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine, GW572016, Tykerb] is a tyrosine kinase inhibitor approved for use in combination with capecitabine to treat advanced or metastatic breast cancers overexpressing HER2 (ErbB2). In this work we investigated the role of efflux and uptake transporters in lapatinib dispositi...

متن کامل

Evidence of drug-drug interactions through uptake and efflux transport systems in rat hepatocytes: implications for cellular concentrations of competing drugs.

For drugs with hepatobiliary transport across hepatocytes, the interplay between uptake and efflux transporters determines hepatic concentrations of drugs, but the evolution over time of these concentrations is difficult to measure in humans other than with magnetic resonance imaging contrast agents in the liver. Gadobenate dimeglumine (BOPTA) is a contrast agent used in liver magnetic resonanc...

متن کامل

Sandwich-cultured hepatocytes for mechanistic understanding of hepatic disposition of parent drugs and metabolites by transporter-enzyme interplay.

Functional interplay between transporters and drug-metabolizing enzymes is currently one of the hottest topics in the field of drug metabolism and pharmacokinetics. Uptake transporter-enzyme interplay is important to determine intrinsic hepatic clearance based on the extended clearance concept. Enzyme-efflux transporter interplay, which includes both sinusoidal (basolateral) and canalicular eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 41 8  شماره 

صفحات  -

تاریخ انتشار 2013